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1 Introduction

We say that an increasing function h : N→ (0,+∞) is a growth rate if

lim
m→+∞

h(m) = +∞.

For example, eam, ma + b, maebm, ma log(b + m) with a, b > 0 are growth rates. Given a growth
rate h, we can define h-Lyapunov exponent λ : Cn → R ∪ {−∞} associated with the linear
difference equation

xm+1 = Amxm, m ∈N (1.1)

by

λ(x) = lim sup
m→+∞

log‖A(m, 1)x‖
log h(m)

, (1.2)

where x ∈ Cn, (Am)m∈N is a sequence of n× n invertible matrices with complex entries such
that

sup
m∈N

‖Am‖ < +∞,
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and A is the cocycle produced by (Am)m∈N, that is

A(m, l) =


Am−1 · · · Al , if m > l,

Id, if m = l,

A−1
m · · · A−1

l−1, if m < l.

In this paper, we show that if all h-Lyapunov exponents of (1.1) are limits, the asymptotic
behavior of (1.1) persists under sufficiently small perturbations for the nonlinear equation

xm+1 = Amxm + fm(xm), (1.3)

where the perturbation fm : Cm → Cm is continuous and small enough. More precisely, if the
sequence (1.3) is not eventually zero, the limit

λ = lim
m→+∞

log‖xm‖
log h(m)

exists and coincides with an h-Lyapunov exponent of (1.1). The required smallness of the
perturbation is that

∞

∑
m=1

µ(m + 1)δ1 ν(m + 1)δ2 sup
x 6=0

‖ fm(x)‖
‖x‖ < +∞, (1.4)

or simply
∞

∑
m=1

µ(m + 1)δ1 ν(m + 1)δ2
‖ fm(xm)‖
‖xm‖

< +∞

for some δ1, δ2 > 0, where µ, ν are two given growth rates. When µ(m) = ν(m) = em, we
recover the result in [9] and (1.4) becomes

∞

∑
m=1

eδm sup
x 6=0

‖ fm(x)‖
‖x‖ < +∞,

for some δ > 0.
In the literature, the results related to the above problems are called “Perron-type theo-

rems”. For the case Am = A being constant, the results were proved by Coffman [13]. A
related result for perturbations of a differential equation x′ = Ax with constant coefficient
can be found in the book [14]. More results can be found in [15–19, 22, 23]. Recently, Barreira
and Valls established the Perron-type theorems for nonautonomous differential equations [8]
and nonautonomous difference equations [7, 9, 10], based on Lyapunov’s theory of regularity.
Especially, they considered the cases with nonuniform exponential behavior. In this paper, we
will follow the ideas of Barreira and Valls.

Such problems are also very close to the theory of nonuniform exponential dichotomies,
which was inspired both by the classical notion of exponential dichotomy and by the notion of
nonuniformly hyperbolic trajectory introduced by Barreira and Pesin (see [3]), and have been
developed in a systematic way by Barreira and Valls (see [4–6] and the references therein)
during the last several years. As explained by Barreira and Valls, in comparison to the notion
of exponential dichotomies introduced by Perron in [21], nonuniform exponential dichotomy
is a useful and weaker notion. A very general type of nonuniform exponential dichotomy, the
so-called (µ, ν) exponential dichotomy, has been considered in [1, 2, 11, 12].

Compared with those results in the literature, the novelty of this work is that we estab-
lish the Perron-type theorem for nonautonomous difference equations with different growth



Perron-type theorem for difference equations with nonuniform behavior 3

rates in the uniform parts and nonuniform parts. More precisely, we consider the (h, k, µ, ν)

nonuniform behavior and this creates additional complications in the analysis. We refer the
reader to [20] for some results on the so-called (h, k)-dichotomies, which were introduced by
Pinto.

2 Preliminaries

Given a growth rate h and consider a sequence (Am)m∈N of invertible n × n matrices with
complex entries such that

lim sup
m→+∞

log ‖A(m, 1)‖
log h(m)

< +∞. (2.1)

The h-Lyapunov exponent λ : Cn → R ∪ {−∞} of equation (1.1) is defined by the formula
(1.2), with the convention that log 0 = −∞ to illustrate the value λ(0) = −∞. It follows from
(2.1) that λ never takes the value +∞. By the general theory of Lyapunov exponents (see [3]
for details), we know that the Lyapunov exponent λ can take on only finitely many distinct
values −∞ ≤ λ1 < · · · < λp, where p ≤ n. Furthermore, for each 1 ≤ i ≤ p, we define

Ei = {x ∈ Cn : λ(x) ≤ λi}

as a linear subspace over Cn (with the convention that E0 = {0}). Obviously,

{0} = E0 ( E1 ( · · · ( Ep.

We set ki = dim Ei − dim Ei−1.
Now we describe the assumptions in the paper.

(H1) There exist decompositions

Cn = F1
m ⊕ F2

m ⊕ · · · ⊕ Fp
m, m ∈N

into subspaces of dimension dim Fi
m = ki such that for each m, l ∈ N and i =

1, . . . , p,
A(m, l)Fi

l = Fi
m.

Thus for a given number b ∈ R which is not a h-Lyapunov exponent, there exist a
decomposition

Cn = El ⊕ Fl , (2.2)

and El = Ei when λi < b < λi+1, where

El =
⊕
λi<b

Fi
l and Fl =

⊕
λi>b

Fi
l

for each l ∈N.

(H2) Take a < b < c such that the interval [a, c] contains no Lyapunov exponent and a
given constant ε > 0, there exists a constant K = K(ε) > 0 such that

‖A(m, l)Pl‖ ≤ K
(

h(m)

h(l)

)a

µ(l)ε, m ≥ l, (2.3)
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and

‖A(m, l)Ql‖ ≤ K
(

k(m)

k(l)

)c

ν(l)ε, m ≤ l, (2.4)

in which Pl and Ql are the projections associated with the decomposition (2.2) and
h, k, µ, ν are growth rates.

(H3) The growth rates h, k, µ, ν satisfy

µ(m) ≤ h(m), µ(m) ≤ k(m), ν(m) ≤ h(m), ν(m) ≤ k(m), m ∈N,

and h, k satisfy the compensation condition: there exists a constant 0 < η < 1 such
that (

h(m)

h(l)

)a

≤ η

(
k(m)

k(l)

)c

, m ≥ l ≥ 0.

Take m = l in (2.3)-(2.4), we can obtain

‖Pm‖ ≤ Kµ(m)ε and ‖Qm‖ ≤ Kν(m)ε. (2.5)

Moreover, for every m, l ∈N, we have

PmA(m, l) = A(m, l)Pl , QmA(m, l) = A(m, l)Ql . (2.6)

The compensation condition in H3 is very important in our analysis. For the uniform (h, k)
behavior, [20, Section VI] illustrate importance of “h and k are compensated”.

In Section 4, we will give two explicit examples of sequences (Am)m∈N which satisfy as-
sumptions (H1)–(H3).

3 Main results

The following is our main result. It claims that under sufficiently small perturbations, the
Lyapunov exponent of (1.3) coincides with some Lyapunov exponent of the unperturbed dif-
ference equation (1.1).

Theorem 3.1. Let (xm)m∈N be a sequence satisfying (1.3) and

‖ fm(xm)‖ ≤ γm‖xm‖, m ∈N, (3.1)

where the sequence γm satisfies

∞

∑
m=1

µ(m + 1)δ1 ν(m + 1)δ2 γm < +∞ (3.2)

for some δ1, δ2 ≥ ε > 0 and two growth rates µ, ν are given in (H2). Assume that conditions
(H1)–(H3) are satisfied. Then one of the following alternatives hold:

(1) xm = 0 for all sufficiently large m;

(2) the limit

lim
m→∞

log ‖xm‖
log h(m)

exists and coincides with a Lyapunov exponent of (1.1).
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Before presenting the proof of Theorem 3.1, we prove several lemmas.

Lemma 3.2. There exists a constant K′ > 0 such that

‖xm‖ ≤ K′
(

h(m)

h(l)

)d

µ(l)ε‖xl‖ (3.3)

for every m, l ∈ N with m ≥ l and d > λp. In particular, given r ∈ N there exists C = C(r) > 0
such that

C−1µ((s + 1)r)−ε‖x(s+1)r‖ ≤ ‖xm‖ ≤ Cµ(sr)ε‖xsr‖ (3.4)

for all l ≤ sr ≤ m ≤ (s + 1)r.

Proof. For each m ≥ l, (1.3) has a solution xm which can be written as

xm = A(m, l)xl +
m−1

∑
j=l
A(m, j + 1) f j(xj). (3.5)

Note that d > λp, it follows from (2.3) that

‖A(m, l)‖ ≤ K
(

h(m)

h(l)

)d

µ(l)ε, m ≥ l. (3.6)

Then by (3.1) and (3.5), we obtain

‖xm‖ ≤ K
(

h(m)

h(l)

)d

µ(l)ε‖xl‖+ K
m−1

∑
j=l

(
h(m)

h(j + 1)

)d

µ(j + 1)εγj‖xj‖,

and hence, (
h(m)

h(l)

)−d

‖xm‖ ≤ Kµ(l)ε‖xl‖+ K
m−1

∑
j=l

(
h(l)

h(j + 1)

)d

µ(j + 1)εγj‖xj‖.

One can use induction to show that(
h(m)

h(l)

)−d

‖xm‖ ≤ Kµ(l)ε‖xl‖
m−1

∏
j=l

(1 + Kµ(j + 1)εγj)

for m ≥ l. Hence

‖xm‖ ≤ K
(

h(m)

h(l)

)d

µ(l)ε‖xl‖ exp
( m−1

∑
j=l

Kµ(j + 1)εγj

)

≤ K
(

h(m)

h(l)

)d

µ(l)ε‖xl‖ exp
(

K
∞

∑
j=1

µ(j + 1)εγj

)
.

Therefore, by using (3.2), we know that property (3.3) holds with

K′ = K exp
(

K
∞

∑
j=1

µ(j + 1)εγj

)
.

In particular, (3.3) implies that property (3.4) holds with C = K′( A
B )

d, where

A = max
sr≤t≤(s+1)r

h(t), B = min
sr≤t≤(s+1)r

h(t).

This completes the proof of the lemma.
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Let b ∈ R be a number that is not an h-Lyapunov exponent. Let also a < b < c be as in
Section 2. We consider the norm

‖x‖m = sup
m′≥m

(
( h(m′)

h(m)
)−a‖A(m′, m)Pmx‖

)
+ sup

m′≤m

(
( k(m′)

k(m)
)−c‖A(m′, m)Qmx‖

)
for each m ∈N and x ∈ Cn. We have

‖x‖m = ‖Pmx‖m + ‖Qmx‖m (3.7)

and one can easily verify that

‖x‖ ≤ ‖x‖m ≤ K(µ(m)ε + ν(m)ε)‖x‖. (3.8)

Lemma 3.3. We have

‖A(m, l)Plx‖m ≤
(

h(m)

h(l)

)a

‖Plx‖l for m ≥ l, (3.9)

and

‖A(m, l)Qlx‖m ≥
(

k(m)

k(l)

)c

‖Qlx‖l for m ≥ l. (3.10)

Proof. For m ≥ l we have

‖A(m, l)Plx‖m = sup
m′≥m

((
h(m′)
h(m)

)−a

‖A(m′, m)A(m, l)Plx‖
)

=

(
h(m)

h(l)

)a

sup
m′≥m

((
h(m′)
h(l)

)−a

‖A(m′, l)Plx‖
)

≤
(

h(m)

h(l)

)a

sup
m′≥l

((
h(m′)
h(l)

)−a

‖A(m′, l)Plx‖
)

=

(
h(m)

h(l)

)a

‖Plx‖l .

Similarly, for m ≥ l we have

‖A(m, l)Qlx‖m = sup
m′≤m

((
k(m′)
k(m)

)−c

‖A(m′, m)A(m, l)Qlx‖
)

=

(
k(m)

k(l)

)c

sup
m′≤m

((
k(m′)
k(l)

)−c

‖A(m′, l)Qlx‖
)

≥
(

k(m)

k(l)

)c

sup
m′≤l

((
k(m′)
k(l)

)−c

‖A(m′, l)Qlx‖
)

=

(
k(m)

k(l)

)c

‖Qlx‖l .

This completes the proof of the lemma.

Now let (xm)m∈N be a sequence satisfying (1.3). Using the decomposition in (2.2), we can
write xm = ym + zm, where

ym = Pmxm, zm = Qmxm.
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Applying Pm and Qm to both sides of (3.5) and using (2.6), we obtain,

ym = A(m, l)yl +
m−1

∑
j=l
A(m, j + 1)Pj+1 f j(xj),

and

zm = A(m, l)zl +
m−1

∑
j=l
A(m, j + 1)Qj+1 f j(xj).

Lemma 3.4. Let b ∈ R be a number that is not an h-Lyapunov exponent, then one of the following
alternatives holds:

1.

lim sup
m→+∞

log ‖xm‖
log h(m)

< b (3.11)

and

lim
s→+∞

‖zsr‖sr

‖ysr‖sr
= 0; (3.12)

2.

lim inf
m→+∞

log ‖xm‖
log k(m)

> b (3.13)

and

lim
s→+∞

‖ysr‖sr

‖zsr‖sr
= 0. (3.14)

Proof. For m ≥ sr we have

ym = A(m, sr)Psrxsr +
m−1

∑
j=sr
A(m, j + 1)Pj+1 f j(xj) (3.15)

and

zm = A(m, sr)Qsrxsr +
m−1

∑
j=sr
A(m, j + 1)Qj+1 f j(xj). (3.16)

By (3.8) and (3.10), it follows from (3.16) that for m ≥ sr

‖zm‖m ≥ ‖A(m, sr)Qkrxsr‖m −
∥∥∥∥ m−1

∑
j=sr
A(m, j + 1)Qj+1 f j(xj)

∥∥∥∥
m

≥
(

k(m)

k(sr)

)c

‖zsr‖sr − K(µ(m)ε + ν(m)ε)
m−1

∑
j=sr
‖A(m, j + 1)Qj+1 f j(xj)‖.

Using (2.5), (3.4), (3.6), (3.7) and (3.8), it follows from (H3) that for m ≤ (s + 1)r,

‖zm‖m ≥
(

k(m)

k(sr)

)c

‖zsr‖sr − K3(µ(m)ε + ν(m)ε)
m−1

∑
j=sr

(
h(m)

h(j + 1)

)d

µ(j + 1)εν(j + 1)εγj‖xj‖

≥
(

k(m)

k(sr)

)c

‖zsr‖sr − D1τ1
s ‖xsr‖

≥
(

k(m)

k(sr)

)c

‖zsr‖sr − D1τ1
s (‖ysr‖sr + ‖zsr‖sr) (3.17)
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with

D1 = K3Cµ(sr)ε max
sr≤m≤(s+1)r

(µ(m)ε + ν(m)ε) max
sr≤j≤m−1

(
h(m)

h(j + 1)

)d

and

τ1
s =

(s+1)r−1

∑
j=sr

µ(j + 1)εν(j + 1)εγj.

By (3.2),
τ1

s → 0, s→ ∞. (3.18)

Using (2.3), (3.4), (3.7), (3.8), (3.9) and (3.15), it follows from similar estimates that for
sr ≤ m ≤ (s + 1)r,

‖ym‖m ≤
(

h(m)

h(sr)

)a

‖ysr‖sr + K2(µ(m)ε + ν(m)ε)
(s+1)r−1

∑
j=sr

(
h(m)

h(j + 1)

)a

µ(j + 1)εγj‖xj‖

≤
(

h(m)

h(sr)

)a

‖ysr‖sr + D2τ2
s ‖xsr‖

≤
(

h(m)

h(sr)

)a

‖ysr‖sr + D2τ2
s (‖ysr‖sr + ‖zsr‖sr), (3.19)

with

D2 = K2Cµ(sr)ε max
sr≤m≤(s+1)r

(µ(m)ε + ν(m)ε) max
sr≤j≤m−1

(
h(m)

h(j + 1)

)a

and

τ2
s =

(s+1)r−1

∑
j=sr

µ(j + 1)εγj.

By (3.2),
τ2

s → 0, s→ ∞. (3.20)

Inequalities (3.17) and (3.19) yield that

‖zm‖m ≥ α‖zsr‖sr − Dτ1
s (‖ysr‖sr + ‖zsr‖sr) (3.21)

and
‖ym‖m ≤ β‖ysr‖sr + Dτ2

s (‖ysr‖sr + ‖zsr‖sr) (3.22)

with

α =

(
k(m)

k(sr)

)c

, β =

(
h(m)

h(sr)

)a

and D = D1 + D2.

Now we claim that either

‖zsr‖sr ≤ ‖ysr‖sr for all large s, (3.23)

or
‖ysr‖sr < ‖zsr‖sr for all large s. (3.24)

We shall show that if (3.23) fails, then (3.24) holds. Let us assume that (3.23) does not hold.
Then

‖ysr‖sr < ‖zsr‖sr for infinitely many s. (3.25)
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By (3.18) and (3.20), given τ > 0, there exists s′ such that τ1
s , τ2

s < τ for s ≥ s′. By (3.21)
and (3.22), we find that for infinitely many integers s ≥ s′,

‖z(s+1)r‖(s+1)r ≥ (αs − Dτ)‖zsr‖sr − Dτ‖ysr‖sr (3.26)

and
‖y(s+1)r‖(s+1)r ≤ (βs + Dτ)‖ysr‖sr + Dτ‖zsr‖sr (3.27)

with

αs =

(
k((s + 1)r)

k(sr)

)c

, βs =

(
h((s + 1)r)

h(sr)

)a

and D = D1 + D2.

By (3.25), there exists s′′ > s′ such that

‖ys′′r‖s′′r < ‖zs′′r‖s′′r.

We show by induction on s that

‖ysr‖sr < ‖zsr‖sr for all s ≥ s′′. (3.28)

Let us assume that ‖ysr‖sr < ‖zsr‖sr for some s ≥ s′′. By (3.26) and (3.27), we have

‖z(s+1)r‖(s+1)r ≥ (αs − 2Dτ)‖zsr‖sr

and
‖y(s+1)r‖(s+1)r ≤ (βs + 2Dτ)‖zsr‖sr

provided that τ is sufficiently small.
Under the assumption (H3), it is easy to see that

‖y(s+1)r‖(s+1)r ≤
βs + 2Dτ

αs − 2Dτ
‖z(s+1)r‖(s+1)r < ‖z(s+1)r‖(s+1)r.

This shows that (3.28) holds. Thus, we show that if (3.23) fails, then (3.24) holds. As a
consequence, we have the following two cases.

Case 1. Let us assume that (3.23) holds. We show that (3.11) and (3.12) hold.
Given τ > 0, there exists s0 such that τ1

s , τ2
s < τ and ‖zsr‖sr ≤ ‖ysr‖sr for s ≥ s0. By (3.27),

we find that for s ≥ s0,
‖y(s+1)r‖(s+1)r ≤ (βs + 2Dτ)‖ysr‖sr,

which implies that

‖ysr‖sr ≤ ‖ys0r‖s0r

s−1

∏
j=s0

(β j + 2Dτ).

Together with (3.4),(3.7) and (3.8), this yields that for for s ≥ s0 and sr ≤ m ≤ (s + 1)r,

‖xm‖ ≤ Cµ(sr)ε‖xsr‖ ≤ Cµ(sr)ε‖xsr‖sr

= Cµ(sr)ε(‖ysr‖sr + ‖zsr‖sr)

≤ 2Cµ(sr)ε‖ysr‖sr

≤ 2C‖ys0r‖s0rµ(sr)ε
s−1

∏
j=s0

(β j + 2Dτ).
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Under the assumptions (H3), thus we have

lim sup
m→+∞

log ‖xm‖
log h(m)

≤ lim sup
s→+∞

( log ∏s−1
j=s0

(β j + 2Dτ)

log h(sr)
+ ε

)
.

Since τ is arbitrary and provided that ε is sufficiently small, we obtain

lim sup
m→+∞

log ‖xm‖
log h(m)

≤ lim sup
s→+∞

( log ∏s−1
j=s0

β j

log h(sr)
+ ε

)
= a + ε < b.

This establishes (3.11). Now we prove (3.12). We know that ‖ysr‖sr > 0 for all large s, since
otherwise (3.7) and (3.23) yield

‖xm‖ ≤ Cµ(sr)ε‖xsr‖sr ≤ 2Cµ(sr)ε‖ysr‖sr = 0

for all large m, contradicting the hypothesis that xm > 0 exists for some large m.
Define

S = lim sup
s→+∞

‖zsr‖sr

‖ysr‖sr
.

By (3.23) we have 0 ≤ S ≤ 1. It follows from (3.22) and (3.23) that for all large s

‖y(s+1)r‖(s+1)r ≤ (βs + 2Dτ2
s )‖ysr‖sr.

Together with (3.21), this yields that for all large s,

‖z(s+1)r‖(s+1)r

‖y(s+1)r‖(s+1)r
≥ αs − Dτ1

s
βs + 2Dτ2

s

‖zsr‖sr

‖ysr‖sr
− Dτ1

s
βs + 2Dτ2

s
.

Taking the limit superior on both sides and using (3.18) and (3.20), we obtain S ≥ (αs/βs)S.
Under the assumption (H3) we have

lim
s→∞

αs

βs
≥ 1

η
> 1,

this implies S = 0, and (3.12) holds.

Case 2. Now we assume that (3.24) holds. We show that (3.13) and (3.14) hold.
Given τ > 0, there exists s0 such that τ1

s , τ2
s < τ and ‖ysr‖sr < ‖zsr‖sr for s ≥ s0. By (3.26),

we find that for s ≥ s0,
‖z(s+1)r‖(s+1)r ≥ (αs − 2Dτ)‖zsr‖sr,

which implies that

‖z(s+1)r‖(s+1)r ≥ ‖zs0r‖s0r

s

∏
j=s0

(αj − 2Dτ).

Together with (3.4), (3.7) and (3.8), this yields that for for s ≥ s0 and sr ≤ m ≤ (s + 1)r,

‖xm‖ ≥ C−1µ((s + 1)r)−ε‖x(s+1)r‖
≥ C−1K−1(µ((s + 1)r)ε + ν((s + 1)r)ε)−1µ((s + 1)r)−ε‖x(s+1)r‖(s+1)r

≥ C−1K−1(µ((s + 1)r)ε + ν((s + 1)r)ε)−1µ((s + 1)r)−ε‖z(s+1)r‖(s+1)r

≥ ‖zs0r‖s0r

CK(µ((s + 1)r)ε + ν((s + 1)r)ε)µ((s + 1)r)ε

s

∏
j=s0

(αj − 2Dτ).
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Under the assumptions (H2), thus we have

lim inf
m→+∞

log ‖xm‖
log k(m)

≥ lim inf
s→+∞

( log ∏s−1
j=s0

(αj − 2Dτ)

log k((s + 1)r)
− 3ε

)
.

Since τ is arbitrary and provided that ε is sufficiently small, we obtain

lim inf
m→+∞

log ‖xm‖
log k(m)

≥ lim inf
s→+∞

( log ∏s−1
j=s0

αj

log k((s + 1)r)
− 3ε

)
= c− 3ε > b.

This establishes (3.13). Now we prove (3.14). We define

T = lim sup
s→+∞

‖ysr‖sr

‖zsr‖sr
.

By (3.24) we have 0 ≤ T ≤ 1. It follows from (3.21) and (3.24) that for all large s

‖z(s+1)r‖(s+1)r ≥ (αs − 2Dτ1
s )‖zsr‖sr.

Together with (3.22), this yields that for all large s,

‖y(s+1)r‖(s+1)r

‖z(s+1)r‖(s+1)r
≤ βs + Dτ2

s
αs − 2Dτ1

s

‖ysr‖sr

‖zsr‖sr
+

Dτ2
s

αs − 2Dτ1
s

.

Taking the limit superior on both sides and using (3.18) and (3.20), we obtain T ≤ (βs/αs)T.
Under the assumption (H3) we have

lim
s→∞

βs

αs
≤ η < 1,

this implies T = 0, and (3.14) holds.

Proof of Theorem 3.1. Let (xm)m∈N be a sequence satisfying the hypotheses of Theorem 3.1. If
xk′ = 0 for some k′, then it follows from (3.3) that xk = 0 for all k ≥ k′, and hence, the first
alternative in the theorem holds. Now we assume that xk 6= 0 for all k ≥ k′. Let λ1 < · · · < λp

be the Lyapunov exponents of the sequence (Am)m∈N.
On both sides of λi, take real numbers bj such that

λj−1 < bj−1 < λj

and
λj < bj < λj+1.

Take b0 < λ1 when λ1 6= −∞ and bp > λp.
Applying Lemma 3.4 to each number b = bj, we conclude that there exists j ∈ {1, . . . , p}

such that

lim sup
m→+∞

log ‖xm‖
log h(m)

< bj

and

lim inf
m→+∞

log ‖xm‖
log k(m)

> bj−1.

Considering h(m) = k(m) and letting bj ↘ λj and bj−1 ↗ λj, we find that

lim
m→+∞

log ‖xm‖
log h(m)

= λj.

Now the proof is finished.
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4 Examples

In this section, we present the following examples which will show the (h, k, µ, ν)-dichotomies.
To show the difference with different values of h, k, µ and ν, we follow the ideas of Naulin
and Pinto in [20]. In order to make precise statements, we first introduce some notations and
concepts for difference equations.

Now, we introduce the sequence spaces

lh :=
{

x : N→ Cm ∣∣ sup
m∈N

|h−1
m xm| < ∞

}
,

lh,0 :=
{

x ∈ lh | lim
m→∞

h−1
m xm = 0

}
,

which equipped with the norm
‖x‖h = sup

m∈N

|h−1
m xm|.

It is easy to see that the spaces (lh, ‖ · ‖h) and (lh,0, ‖ · ‖h) are Banach spaces. Let Vh be the
subspace of Cm defining by the following property: if ξ ∈ Vh, then the solution of the linear
difference system (1.1) with initial condition x0 = ξ belongs to lh. Analogously we introduce
the subspace Vh,0 of the initial conditions by the following property: if ξ ∈ Vh,0, then the
solution of the linear difference system (1.1) with initial condition x0 = ξ belongs to lh,0.

Following the ideas of [20] (see also Chapter 2 in [15]), we consider the nonuniform be-
havior, and then we have the following property:

If (1.1) has the (h, k, µ, ν)-dichotomy

‖A(m, l)Pl‖ ≤ K
h(m)

h(l)
µ(l), m ≥ l, (4.1)

and

‖A(m, l)Ql‖ ≤ K
k(m)

k(l)
ν(l), m ≤ l. (4.2)

and (H1) is fulfilled, then
Vh,0 ⊂ Vk,0 ⊂ P[Cm] ⊂ Vh ⊂ Vk,

where P : Cm → Cm is a projection such that PP = P.
Now two linear difference systems, which admit (h, k, µ, ν)-dichotomies but does not admit

(h, k)-dichotomies, will be given to illustrate the relation of Vh,0, Vk,0, P[Cm], Vh and Vk.

Example 4.1. Now we consider the system

xm+1 =

 e−1+ 1
4 m(−1)m− 1

4 (m−1)(−1)m−1
0 0

0 1 0
0 0 e1− 1

4 m(−1)m+ 1
4 (m−1)(−1)m−1

 xm (4.3)

and define the projection matrices

P1 :=

 1 0 0
0 1 0
0 0 0

 , P2 :=

 1 0 0
0 0 0
0 0 0

 .
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Since

A(m, l)P1 =

 e−(m−l−1)+ 1
4 (m−l−1)(−1)m−1+ 1

4 l(−1)(m−1)+ 1
4 l(−1)l

0 0
0 1 0
0 0 0


and

A(m, l)P2 =

 e−(m−l−1)+ 1
4 (m−l−1)(−1)m−1+ 1

4 l(−1)(m−1)+ 1
4 l(−1)l

0 0
0 0 0
0 0 0

 ,

then (4.1) holds with

K = e
5
4 , h(m) ≥ e−

3
4 m, and µ(m) ≥ e

1
2 m,

and (4.2) holds with

K = e
5
4 , k(m) ≤ e

3
4 m, and ν(m) ≥ e

1
2 m.

Besides, it is easy to verify that the nonuniform part can not be removed, see [24] for details.
Thus we can list the following (h, k, µ, ν)-dichotomies:

D1’. With projection P = P1 the system (4.3) has an (h, k, µ, ν)-dichotomy with h(m) =

k(m) = 1, µ(m) = ν(m) = e
1
2 m and the property Vh,0 = Vk,0 6= P[Cm] = Vh = Vk.

D2’. With projection P = P2 the system (4.3) has an (h, k, µ, ν)-dichotomy with h(m) =

k(m) = 1, µ(m) = ν(m) = e
1
2 m and the property Vh,0 = Vk,0 = P[Cm] 6= Vh = Vk.

D3’. With projection P = P1 the system (4.3) has an (h, k, µ, ν)-dichotomy with h(m) = 1,
k(m) = e

3
4 m, µ(m) = ν(m) = e

1
2 m and the property Vh,0 6= Vk,0 = P[Cm] = Vh 6= Vk.

D4’. With projection P = P1 the system (4.3) has an (h, k, µ, ν)-dichotomy with h(m) =

k(m) = e
3
4 m, µ(m) = ν(m) = e

1
2 m and the property Vh,0 = Vk,0 = P[Cm] 6= Vh = Vk.

Example 4.2. Now we consider the system

xm+1 =

 m+1
m e−1+ 1

4 m(−1)m− 1
4 (m−1)(−1)m−1

0 0
0 1 0
0 0 m+1

m e1− 1
4 m(−1)m+ 1

4 (m−1)(−1)m−1

 xm (4.4)

with projections P1, P2 defined in the Example 4.1.

Since

A(m, l)P1 =

 m
l e−(m−l−1)+ 1

4 (m−l−1)(−1)m−1+ 1
4 l(−1)(m−1)+ 1

4 l(−1)l
0 0

0 1 0
0 0 0


and

A(m, l)P2 =

 m
l e−(m−l−1)+ 1

4 (m−l−1)(−1)m−1+ 1
4 l(−1)(m−1)+ 1

4 l(−1)l
0 0

0 0 0
0 0 0

 ,
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then (4.1) holds with

K = e
5
4 , h(m) ≥ me−

3
4 m, and µ(m) ≥ e

1
2 m,

and (4.2) holds with

K = e
5
4 , k(m) ≤ me

3
4 m, and ν(m) ≥ e

1
2 m.

Thus we can list the following (h, k, µ, ν)-dichotomies:

D1”. With projection P = P1 the system (4.4) has an (h, k, µ, ν)-dichotomy with h(m) =

k(m) = m, µ(m) = ν(m) = e
1
2 m and the property Vh,0 = Vk,0 = P[Cm] = Vh = Vk.

D2”. With projection P = P1 the system (4.4) has an (h, k, µ, ν)-dichotomy with h(m) =

k(m) = me
3
4 m, µ(m) = ν(m) = e

1
2 m and the property Vh,0 = Vk,0 = P[Cm] 6= Vh = Vk.

Remark 4.3. From the analysis above, it is easy to verify that hypotheses (H1)–(H3) can
be satisfied in D4’ of Example 4.1 and D2” of Example 4.2 respectively, and, consequently,
Theorem 3.1 are applicable to these examples.
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